Blog>>Deep dive

BLOG / Deep dive

Thumbnail of an article about Microsoft Azure cost management in cloud-based software development
CLOUD

Microsoft Azure cost management in cloud-based software development

Software development, testing and R&D activities very often require considerable cloud resources. At the same time, these are dynamic environments which can lead to ballooning cloud costs. Public clouds such as AWS, GCP or Microsoft Azure have native mechanisms to manage and optimize spend, but they can’t prevent you from incurring unwanted and uncontrolled costs. This led us to create our own cloud cost optimization solution. In this, the final part of our three-part series, we will show you how to build an Azure cost management solution.
Thumbnail of an article about How to optimize GCP costs in cloud-based software development
CLOUD

How to optimize GCP costs in cloud-based software development

Scalability, availability and high availability—these are the advantages that make public clouds a must have in modern software development. But they can cost you dearly if you don’t manage your cost spending carefully. In the second part of our three-part series on cloud cost optimization, we will show you how to get the GCP bill under control and avoid unexpected cloud costs. Following up on our initial blog about AWS, we’ll now turn to building a cost management solution for the second public cloud: Google Cloud Platform (GCP).
Thumbnail of an article about Tungsten Fabric as a Kubernetes CNI plugin
NETWORKS

Tungsten Fabric as a Kubernetes CNI plugin

CNI (Container Networking Interface) is an interface between container runtime and network implementation. It allows different projects, like Tungsten Fabric, to provide their implementation of the CNI plugins and use them to manage networking in a Kubernetes cluster. In this blog post, you will learn how to use Tungsten Fabric as a Kubernetes CNI plugin to ensure network connectivity between containers and bare metals. You will also see an example of a nested deployment of a Kubernetes cluster into OpenStack VM with a TF CNI plugin.
Thumbnail of an article about AWS cost optimization — keeping cloud-based software development costs under control
CLOUD

AWS cost optimization — keeping cloud-based software development costs under control

Public clouds are now indispensable in modern software development. They offer flexibility, scalability and high availability. At the same time, cloud cost management can be tricky, and generate unwanted spend that will be a considerable burden for the overall budget of your software project. In our three-part series on cloud cost management, you will read how to keep costs under control in the three most popular public clouds: AWS, GCP and Azure. In this first installment, we will present our approach to AWS cost optimization.
Thumbnail of an article about Managing data center physical infrastructure with Tungsten Fabric
NETWORKS

Managing data center physical infrastructure with Tungsten Fabric

A data center’s physical infrastructure can consist of multiple devices including switches and routers. Managing them can be a time-consuming and error-riddled process. Adding an SDN solution to your legacy data center network makes the entire problem even more complex. Tungsten Fabric, an open-source SDN controller, may be the answer. Read on to know more. Modern data centers are built as flat two/three layers of deeply interconnected devices known as a fabric. This leaf-spine architecture is robust and easy to scale out by adding new devices instead of replacing older devices with more powerful ones.
Thumbnail of an article about Deploying a Kubernetes operator in OpenShift 4.x platform
CLOUD

Deploying a Kubernetes operator in OpenShift 4.x platform

Contrail-operator is a recently released open-source Kubernetes operator that implements Tungsten Fabricas a custom resource. Tungsten Fabric is an open-source Kubernetes-compatible, network virtualization solution for providing connectivity and security for virtual, containerized or bare-metal workloads. An operator needed to be adjusted to the OpenShift 4.x platform, which introduced numerous changes to its architecture compared with previous versions. In this blog post, you’ll read about three interesting use cases and their solutions.
Thumbnail of an article about How to create a custom resource with Kubernetes Operator
NETWORKS
CLOUD

How to create a custom resource with Kubernetes Operator

While developing projects on the Kubernetes platform I came across an interesting problem. I had quite a few scripts that ran in containers and needed to be triggered only once on every node in my Kubernetes cluster. This could not be solved using default Kubernetes resources such as DaemonSet and Job. So I decided to write my own resource using Kubernetes Operator Framework. How I went about it is the subject of this blog post. When I confronted this problem, my first thought was to use a DaemonSet resource that utilizes initContainers and then starts a dummy busybox container running `tail -f /dev/null` or another command that does nothing.
arrow

Get your project estimate

For businesses that need support in their software or network engineering projects, please fill in the form and we’ll get back to you within one business day.

For businesses that need support in their software or network engineering projects, please fill in the form and we’ll get back to you within one business day.

We guarantee 100% privacy.

Trusted by leaders:

Cisco Systems
Palo Alto Services
Equinix
Jupiter Networks
Nutanix